
1

 Definition of terms
 Create object-oriented database schemas in

ODL
 Transform UML class diagrams to ODL

schemas
 Identify type specifications for attributes,

arguments, and operation return values
 Create objects and specify their attribute

values
 Understand object-oriented database

implementation steps
 Understand OQL syntax and semantics
 Understand object-oriented database

applications

2

 Corresponds to SQL’s DDL (Data Definition
Language)

 Specify the logical schema for an object-
oriented database

 Based on the specifications of Object
Database Management Group (ODMG)

3

 class – keyword
for defining
classes

 attribute –
keyword for
attributes

 operations –
return type,
name, parameters
in parentheses

 relationship –
keyword for
establishing
relationship

4

See page 620

 Value can be either:
◦ Object identifier OR Literal

 Types of literals
◦ Atomic – a constant that cannot be decomposed into

components
◦ Collection – multiple literals or object types
◦ Structure – a fixed number of named elements, each of which

could be a literal or object type

 Attribute ranges
◦ Allowable values for an attribute
◦ enum – for enumerating the allowable values

5

 Set – unordered collection without
duplicates

 Bag – unordered collection that may contain
duplicates

 List – ordered collection, all the same type

 Array – dynamically sized ordered
collection, locatable by position

 Dictionary – unordered sequence of key-
value pairs without duplicates

6

Structure = user-defined type with
components

struct keyword
Example:

struct Address {
String street_address

String city;

String state;

String zip;

};

7

Return type
Name
Parentheses following the
name

Arguments within the
parentheses

8

 Only unary and binary relationships allowed

 Relationships are bi-directional
◦ implemented through use of inverse keyword

 ODL relationships are specified:
◦ relationship indicates that class is on many-side

◦ relationship set indicates that class is on one-
side and other class (many) instances unordered

◦ relationship list indicates that class is on one-
side and other class (many) instances ordered

9

10

Figure 15-1: UML class diagram for a university database

The following slides illustrate the

ODL implementation of this

UML diagram

11

Figure 15-2: ODL Schema for university database

12

Figure 15-2: ODL Schema for university database (cont.)

class keyword begins

the class

definition.Class

components enclosed

between { and }

13

attribute has a data type and a name

specify allowable values

using enum

Figure 15-2: ODL Schema for university database (cont.)

14

extent = the set of all instances of the class

Figure 15-2: ODL Schema for university database (cont.)

15

Operation definition:

return type, name,

and argument list.

Arguments include

data types and names

Figure 15-2: ODL Schema for university database (cont.)

16

relationship sets indicate 1:N relationship to an

unordered collection of instances of the other class

inverse establishes the bidirectionality of the relationship

Figure 15-2: ODL Schema for university database (cont.)

17

relationship list indicates 1:N relationship to an

ordered collection of instances of the other class

Figure 15-2: ODL Schema for university database (cont.)

18

relationship indicates N:1 relationship to an

instance of the other class

Figure 15-2: ODL Schema for university database (cont.)

19

In order to capture special features of

assignment, this should be converted into

two 1:N relationships

20

class Employee {

(extent employees

 key emp_id)

 ………….

 attribute set <string> skills_required;

};

Note:

key indicates identifier

(candidate key)

Note: attribute set indicates a

multivalued attribute

21

class HourlyEmployee

 extends Employee{

(………….

 ………….

}

Note:

extends

denotes

subclassing

22

Figure 15-5: UML class diagram showing student generalization

abstract class Student{

(………….

 abstract float calc_tuition();

}

Note: abstract operation denotes no

method (no implementation) of

calc_tuition at the Student level

Note: abstract class denotes non-

instantiable (complete constraint)

 Specify a tag that will be the object identifier
◦ MBA699 course ();

 Initializing attributes:
◦ Cheryl student (name: “Cheryl Davis”,

dateOfBirth:4/5/77);

 Initializing multivalued attributes:
◦ Dan employee (emp_id: 3678, name: “Dan Bellon”,

 skills {“Database design”, “OO Modeling”});

 Establishing links for relationship
◦ Cheryl student (takes: {OOAD99F, Telecom99F,

Java99F});

23

 Object Query Language (OQL)
 ODMG standard language
 Similar to SQL-92
 Some differences:

◦ Joins use class’s relationship name:
 Select x.enrollment from courseofferings x, x.belongs_to y where

y.crse_course = “MBA 664” and x.section = 1;
◦ Using a set in a query

 Select emp_id, name from employees where “Database Design” in skills;

24

 Rising popularity due to:
◦ CAD/CAM applications
◦ Geographic information systems
◦ Multimedia
◦ Web-based applications
◦ Increasingly complex data types

 Applications of ODBMS
◦ Bill-of-material
◦ Telecommunications navigation
◦ Health care
◦ Engineering design
◦ Finance and trading

25

26

